20,063 research outputs found

    Measuring quality of care with routine data: avoiding confusion between performance indicators and health outcomes

    Get PDF
    Objective To investigate the impact of factors outside the control of primary care on performance indicators proposed as measures of the quality of primary care. Design Multiple regression analysis relating admission rates standardised for age and sex for asthma, diabetes, and epilepsy to socioeconomic population characteristics and to the supply of secondary care resources. Setting 90 family health services authorities in England, 1989-90 to 1994-5. Results At health authority level socioeconomic characteristics, health status, and secondary care supply factors explained 45% of the variation in admission rates for asthma, 33% for diabetes, and 55% for epilepsy. When health authorities were ranked, only four of the 10 with the highest age-sex standardised admission rates for asthma in 1994-5 remained in the top 10 when allowance was made for socioeconomic characteristics, health status, and secondary care supply factors. There was also substantial year to year variation in the rates. Conclusion Health outcomes should relate to crude rates of adverse events in the population. These give the best indication of the size of a health problem. Performance indicators, however, should relate to those aspects of care which can be altered by the staff whose performance is being measured

    Compressing nearly hard sphere fluids increases glass fragility

    Full text link
    We use molecular dynamics to investigate the glass transition occurring at large volume fraction, phi, and low temperature, T, in assemblies of soft repulsive particles. We find that equilibrium dynamics in the (phi, T) plane obey a form of dynamic scaling in the proximity of a critical point at T=0 and phi=phi_0, which should correspond to the ideal glass transition of hard spheres. This glass point, `point G', is distinct from athermal jamming thresholds. A remarkable consequence of scaling behaviour is that the dynamics at fixed phi passes smoothly from that of a strong glass to that of a very fragile glass as phi increases beyond phi_0. Correlations between fragility and various physical properties are explored.Comment: 5 pages, 3 figures; Version accepted at Europhys. Let

    Bootstrapping the economy -- a non-parametric method of generating consistent future scenarios

    Get PDF
    The fortune and the risk of a business venture depends on the future course of the economy. There is a strong demand for economic forecasts and scenarios that can be applied to planning and modeling. While there is an ongoing debate on modeling economic scenarios, the bootstrapping (or resampling) approach presented here has several advantages. As a non-parametric method, it directly relies on past market behaviors rather than debatable assumptions on models and parameters. Simultaneous dependencies between economic variables are automatically captured. Some aspects of the bootstrapping method require additional modeling: choice and ransformation of the economic variables, arbitrage-free consistency, heavy tails of distributions, serial dependence, trends and mean reversion. Results of a complete economic scenario generator are presented, tested and discussed.economic scenario generator (ESG); asset-liability management (ALM); bootstrapping; resampling; simulation; Monte-Carlo simulation; non-parametric model; yield curve model

    Spectral Properties and Linear Stability of Self-Similar Wave Maps

    Full text link
    We study co--rotational wave maps from (3+1)(3+1)--Minkowski space to the three--sphere S3S^3. It is known that there exists a countable family {fn}\{f_n\} of self--similar solutions. We investigate their stability under linear perturbations by operator theoretic methods. To this end we study the spectra of the perturbation operators, prove well--posedness of the corresponding linear Cauchy problem and deduce a growth estimate for solutions. Finally, we study perturbations of the limiting solution which is obtained from fnf_n by letting nn \to \infty.Comment: Some extensions added to match the published versio

    Critical Percolation Phase and Thermal BKT Transition in a Scale-Free Network with Short-Range and Long-Range Random Bonds

    Get PDF
    Percolation in a scale-free hierarchical network is solved exactly by renormalization-group theory, in terms of the different probabilities of short-range and long-range bonds. A phase of critical percolation, with algebraic (Berezinskii-Kosterlitz-Thouless) geometric order, occurs in the phase diagram, in addition to the ordinary (compact) percolating phase and the non-percolating phase. It is found that no connection exists between, on the one hand, the onset of this geometric BKT behavior and, on the other hand, the onsets of the highly clustered small-world character of the network and of the thermal BKT transition of the Ising model on this network. Nevertheless, both geometric and thermal BKT behaviors have inverted characters, occurring where disorder is expected, namely at low bond probability and high temperature, respectively. This may be a general property of long-range networks.Comment: Added explanations and data. Published version. 4pages, 4 figure

    The Maximum Flux of Star-Forming Galaxies

    Get PDF
    The importance of radiation pressure feedback in galaxy formation has been extensively debated over the last decade. The regime of greatest uncertainty is in the most actively star-forming galaxies, where large dust columns can potentially produce a dust-reprocessed infrared radiation field with enough pressure to drive turbulence or eject material. Here we derive the conditions under which a self-gravitating, mixed gas-star disc can remain hydrostatic despite trapped radiation pressure. Consistently taking into account the self-gravity of the medium, the star- and dust-to-gas ratios, and the effects of turbulent motions not driven by radiation, we show that galaxies can achieve a maximum Eddington-limited star formation rate per unit area Σ˙,crit103M\dot{\Sigma}_{\rm *,crit} \sim 10^3 M_{\odot} pc2^{-2} Myr1^{-1}, corresponding to a critical flux of F,crit1013LF_{\rm *,crit} \sim 10^{13} L_{\odot} kpc2^{-2} similar to previous estimates; higher fluxes eject mass in bulk, halting further star formation. Conversely, we show that in galaxies below this limit, our one-dimensional models imply simple vertical hydrostatic equilibrium and that radiation pressure is ineffective at driving turbulence or ejecting matter. Because the vast majority of star-forming galaxies lie below the maximum limit for typical dust-to-gas ratios, we conclude that infrared radiation pressure is likely unimportant for all but the most extreme systems on galaxy-wide scales. Thus, while radiation pressure does not explain the Kennicutt-Schmidt relation, it does impose an upper truncation on it. Our predicted truncation is in good agreement with the highest observed gas and star formation rate surface densities found both locally and at high redshift.Comment: Version accepted for publication in MNRAS. 12 pages, 8 figures. New appendix on photon tirin

    The N=2N=2 super W4W_4 algebra and its associated generalized KdV hierarchies

    Full text link
    We construct the N=2N=2 super W4W_4 algebra as a certain reduction of the second Gel'fand-Dikii bracket on the dual of the Lie superalgebra of N=1N=1 super pseudo-differential operators. The algebra is put in manifestly N=2N=2 supersymmetric form in terms of three N=2N=2 superfields Φi(X)\Phi_i(X), with Φ1\Phi_1 being the N=2N=2 energy momentum tensor and Φ2\Phi_2 and Φ3\Phi_3 being conformal spin 22 and 33 superfields respectively. A search for integrable hierarchies of the generalized KdV variety with this algebra as Hamiltonian structure gives three solutions, exactly the same number as for the W2W_2 (super KdV) and W3W_3 (super Boussinesq) cases.Comment: 16 pages, LaTeX, UTAS-PHYS-92-3

    Magnetic substructure in the northern Fermi Bubble revealed by polarized WMAP emission

    Full text link
    We report a correspondence between giant, polarized microwave structures emerging north from the Galactic plane near the Galactic center and a number of GeV gamma-ray features, including the eastern edge of the recently-discovered northern Fermi Bubble. The polarized microwave features also correspond to structures seen in the all-sky 408 MHz total intensity data, including the Galactic center spur. The magnetic field structure revealed by the polarization data at 23 GHz suggests that neither the emission coincident with the Bubble edge nor the Galactic center spur are likely to be features of the local ISM. On the basis of the observed morphological correspondences, similar inferred spectra, and the similar energetics of all sources, we suggest a direct connection between the Galactic center spur and the northern Fermi Bubble.Comment: Accepted for publication in The Astrophysical Journal Letters after minor change
    corecore